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Abstract

A di�erential scheme is developed to approximate the elastic behaviour of randomly cracked solids, accounting for

possible locally nonhomogeneous distribution of the cracks. Certain inclusion or matrix spaces within the solids are

modelled as forbidden regions for the cracks. At small to intermediate values of the crack density and proportion of

forbidden regions, the e�ective elastic moduli of the models do not di�er much from each other, but the di�erences

become profound at higher values of those parameters: the e�ective moduli can be very small and large (toward those of

the uncracked solids) depending upon the particular nonhomogeneous arrangements of the cracks. Ó 2000 Elsevier

Science Ltd. All rights reserved.
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1. Introduction

Among the e�ective medium approximation schemes developed to estimate the elastic moduli of ran-
domly inhomogeneous media, the di�erential scheme (Bruggeman, 1935; Brinkman, 1952; Roscoe, 1952;
Salganik, 1973; Boucher, 1976; McLaughlin, 1977; Norris, 1985, 1989; Zimmerman, 1985; Hashin, 1988;
Phan-Thien and Pham, 1997; Pham, 1998a,b) appears to be in certain advantage: It always corresponds to a
certain exact geometry; therefore, it never violates mathematical requirements of the homogenization
procedure, including the imposed bounds. The scheme makes use of the exact solution of the problem for
dilute suspension of inclusions (Eshelby, 1957; Christensen, 1979) or cracks (Bristow, 1960; Budiansky and
O'Connell, 1976; Kachanov, 1992) in an incremental procedure. One can imagine the possible formation
picture of polydispersed cracks: because of high stresses, many small original cracks are formed indepen-
dently and randomly at weak places within a loaded material that can relax the stress level around their
immediate neighbourhoods. These cracks advance further until their stress-relaxed zones come into contact
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(so the cracks of the same size level can be considered as noninteracting at the ®rst approximation). As the
external loads continue to act, some larger and more local-favourably oriented cracks among the already
existing ones may advance further and relax the stress level around them thus preventing the original
neighbouring cracks from developing simultaneously. These larger cracks continue to develop on a larger
scale until their in¯uence zones come into contact with each other. This process can continue further
leading to a polydispersed crack picture. Although such hierarchical geometries are highly idealistic, the
scheme and its speci®c limit for multiphase composite called the self-consistent approximation (Hill, 1965;
Norris, 1985; Pham, 1998a) has been used and attested also in practice to approximate the behaviour of
many realistic nonhierarchical random mixtures. The scheme corresponds, at least, to some exact geometry,
so it secures the approximation from possible contradictory results and a large disagreement with the
observed behaviour of practical mixtures. There is some caution about the path dependence of the dif-
ferential scheme. In our view, that nonuniqueness is an advantageous ¯exibility of the scheme. Practically
random inhomogeneous media have very complicated structures with many possible arrangements of in-
homogeneities, and therefore, one should not expect to have some e�ective medium scheme that can give
unique and exact values of the e�ective moduli. Any practical approximation scheme can take into account,
at most, only some of the main characteristics of the mixtures. The path dependence of the di�erential
scheme should allow us to include some more speci®c features of a particular geometry to improve the
approximation. In that case, the construction path should be based on physical sense, as we try to do in this
work.

2. Di�erential models

We consider a combined random suspension of spherical inclusions having elastic moduli Ki;Gi of
volume fraction vs, and randomly oriented penny-shaped cracks of density � � �1=V �P a3 (a is the crack
radius V , volume of the representative element) in the matrix of an uncracked material having elastic
moduli K;G. The elastic moduli of the random (cracked) mixture are denoted by Kc;Gc. For the di�erential
scheme, we make use of dilute suspension results for spherical inclusions (Hill, 1965; Christensen, 1979;
Phan-Thien and Pham, 1997) and penny-shaped cracks (Bristow, 1960; Gibiansky and Torquato, 1996).
Presume that the spherical inclusions and the circular cracks are comparable on size scales (having the same
size (radius) patterns).

The construction of the di�erential model starts with the basic uncracked matrix of moduli K;G. At each
step of the procedure, we add proportionally in®nitesimal amounts vs Dt �Dt� 1� of the inclusions (moduli
Ki;Gi) and �Dt of randomly oriented cracks of the same size scale into an already constructed mixture of the
previous step, which contains volume fraction vst of the inclusion phase and crack density �t (the parameter
t increases from 0 to 1, as the di�erential scheme proceeds). The inclusions and cracks added at this step
must be considerably greater in sizes to those that have been added previously, and they will see an e�ective
medium, owing to their relative sizes. The new mixture can be considered as a dilute suspension of in-
clusions of volume fraction vs Dt=�1� vs Dt� and cracks of density �Dt=�1� vs Dt� in a matrix of moduli
Kc�t�;Gc�t�. The e�ective moduli (Kc � dKc;Gc � dGc) of the new mixture are

Kc � dKc � Kc � vs Dt
1� vs Dt

�Ki ÿ Kc��3Kc � 4Gc�
3Ki � 4Gc

ÿ �Dt
1� vs Dt

4K2
c �3Kc � 4Gc�

3Gc�3Kc � Gc� ;

Gc � dGc � Gc � vs Dt
1� vs Dt

�Gi ÿ Gc��Gc � G�c�
Gi � G�c

ÿ �Dt
1� vs Dt

16Gc�9Kc � 4Gc��3Kc � 4Gc�
45�3Kc � 2Gc��3Kc � Gc� ; �1�
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where

G�c � Gc

9Kc � 8Gc

6Kc � 12Gc

: �2�

As the volume fraction of the inclusion phase, and crack density increase by

vs dt � vst � vs Dt
1� vs Dt

ÿ vst � �1ÿ vst� vs Dt
1� vs Dt

; �3�

�dt � �t � �Dt
1� vs Dt

ÿ �t � �1ÿ vst� �Dt
1� vs Dt

; �4�

respectively, one deduces the following di�erential equations determining the e�ective elastic moduli of the
mixture by the di�erential scheme

dKc

dt
� 1

1ÿ vst
vs

�Ki ÿ Kc��3Kc � 4Gc�
3Ki � 4Gc

�
ÿ � 4K2

c �3Kc � 4Gc�
3Gc�3Kc � Gc�

�
;

dGc

dt
� 1

1ÿ vst
vs

�Gi ÿ Gc��Gc � G�c�
Gi � G�c

�
ÿ � 16Gc�9Kc � 4Gc��3Kc � 4Gc�

45�3Kc � 2Gc��3Kc � Gc�
�
;

06 t6 1; Kc�0� � K; Gc�0� � G: �5�
In our composite model, the inclusion phase is tough and does not permit the cracks of the same size

scale to enter it. Here, we are interested in a particular case when the uncracked material is elastically
homogeneous, that means Ki � K; Gi � G. For some particulate aggregates (e.g. some rocks), the cracks are
more favourable to originate at the weak boundary zones leaving the internal parts of the grains intact.
These forbidden zones for the cracks, here, are modelled as spherical inclusions. Another possible cause for
the local inhomogeneous distribution of the cracks is for a body with random cracks of the same size, the
regions immediately near the middle of the two faces of a crack are stress-relaxed, so the neighbouring
cracks might be oriented more favourably toward its perimeter region of high stress than to those relaxed
ones. The inhomogeneity is related to the high degree of anisotropy of a crack with one from its three
dimensions approaches zero. Such a material should behave like that with some ®ctitious forbidden zones
for the cracks. Hence, presuming the cracks and the forbidden zones are on the same size scale, from Eq.
(5), we obtain the equations (here Ki � K; Gi � G)

dKc

dt
� 1

1ÿ vst
vs

�K ÿ Kc��3Kc � 4Gc�
3K � 4Gc

�
ÿ � 4K2

c �3Kc � 4Gc�
3Gc�3Kc � Gc�

�
;

dGc

dt
� 1

1ÿ vst
vs

�Gÿ Gc��Gc � G�c�
G� G�c

�
ÿ � 16Gc�9Kc � 4Gc��3Kc � 4Gc�

45�3Kc � 2Gc��3Kc � Gc�
�
;

06 t6 1; Kc�0� � K; Gc�0� � G: �6�
In the case of absence of forbidden zones, Eq. (6) reduce to the usual ones of the di�erential scheme for

cracked solids (Salganik, 1973; Zimmerman, 1985; Hashin, 1988). For numerical illustrations, we take
� � 0! 0:8; vs between 0.2 and 0.8, m � 0:3 �K � 2G�1� m�=3�1ÿ 2m��. The respective solutions of the Eq.
(6) are represented in Tables 1 and 2. We see that as the crack density � increases, the elastic moduli de-
creases considerably. With increasing proportion of forbidden zones vs, the shear modulus Gc also decreases
but slightly, while the bulk modulus Kc is almost una�ected by vs in those ranges.

More intricately the forbidden zones can be of a shape other than spherical. We take the extreme case of
(randomly oriented) platelet inclusions (volume proportion vp, (Pham, 1998a). Then, instead of Eq. (6), the
respective di�erential equations would take the form:
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dKc

dt
� 1

1ÿ vpt
vp

�K ÿ Kc��3Kc � 4G�
3K � 4G

�
ÿ � 4K2

c �3Kc � 4Gc�
3Gc�3Kc � Gc�

�
;

dGc

dt
� 1

1ÿ vpt
vp

�Gÿ Gc��Gc � G��
G� G�

�
ÿ � 16Gc�9Kc � 4Gc��3Kc � 4Gc�

45�3Kc � 2Gc��3Kc � Gc�
�
;

06 t6 1; Kc�0� � K; Gc�0� � G; G� � G
9K � 8G
6K � 12G

: �7�

For numerical illustrations, we take the same ranges for � and vp as was taken for previous spherical
inclusion case. The results are reported in Tables 3 and 4. As in the previous example, the elastic moduli
decrease considerably as the crack density � increases. However, the e�ective moduli increase at increasing
values of the proportion of forbidden platelet inclusions vp.

3. Two-level models

The crack + spherical-forbidden zone model of the previous section was constructed with the pre-
sumption that the cracks and the inclusions are comparable on sizes. In the other case, when the cracks
situated on the boundary of the grains within an aggregate are much smaller in sizes compared with those
of the forbidden inclusions, it should be more appropriate to substitute the model by a two-level one. At
®rst, we apply the di�erential scheme to estimate the moduli �K; �G of the material having moduli K;G with
crack density �=�1ÿ vs�. Then, we again use the scheme to determine the moduli Kc;Gc of the composite

Table 2

Di�erential approximation for the shear modulus Gc=G of cracked material with forbidden spherical zones

� vs � 0 vs � 0:2 vs � 0:4 vs � 0:6 vs � 0:8

0.08 0.894 0.894 0.894 0.894 0.893

0.16 0.796 0.796 0.795 0.795 0.794

0.24 0.707 0.706 0.705 0.704 0.702

0.32 0.626 0.624 0.623 0.620 0.617

0.40 0.552 0.551 0.548 0.545 0.541

0.48 0.487 0.484 0.481 0.477 0.471

0.56 0.428 0.425 0.421 0.417 0.409

0.64 0.376 0.372 0.368 0.362 0.353

0.72 0.329 0.325 0.321 0.314 0.303

0.80 0.288 0.284 0.279 0.271 0.259

Table 1

Di�erential approximation for the bulk modulus Kc=K of cracked material with forbidden spherical zones

� vs � 0 vs � 0:2 vs � 0:4 vs � 0:6 vs � 0:8

0.08 0.740 0.741 0.742 0.743 0.744

0.16 0.568 0.569 0.571 0.573 0.576

0.24 0.446 0.448 0.451 0.454 0.458

0.32 0.357 0.359 0.362 0.366 0.370

0.40 0.289 0.292 0.295 0.299 0.303

0.48 0.237 0.240 0.243 0.246 0.249

0.56 0.196 0.199 0.201 0.204 0.206

0.64 0.164 0.166 0.168 0.170 0.171

0.72 0.137 0.139 0.141 0.142 0.142

0.80 0.116 0.117 0.118 0.119 0.117
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with proportion vs of forbidden spherical inclusions having moduli K;G suspended in the matrix of moduli
�K; �G. The general solution of Eq. (5) is denoted as

Kc � SKf�; vs;Ki;Gi;K;Gg; Gc � SGf�; vs;Ki;Gi;K;Gg: �8�
The e�ective moduli Kc;Gc of our two-level model are then determined by

�K � SKf�=�1ÿ vs�; 0; 0; 0;K;Gg; �G � SGf�=�1ÿ vs�; 0; 0; 0;K;Gg;
Kc � SKf0; vs;K;G; �K; �Gg; Gc � SGf0; vs;K;G; �K; �Gg: �9�

Consider also the opposite case: because of some strengthening process, the boundary regions of the
grains become forbidden regions for the cracks, so the cracks should be concentrated in the internal central
part of the grains. Presume also that the cracks are also of a much smaller size than the grains, so we should
construct a two-level model for the case: At ®rst, we apply the di�erential scheme to estimate the moduli
�K; �G of the material having virgin moduli K;G with crack density �=vs. Then again use the scheme to
determine the moduli Kc;Gc of the composite with proportion vs of spherical inclusions having moduli �K; �G
suspended in the matrix of moduli K;G (Note that in the considered model, the forbidden matrix region has
the volume proportion 1ÿ vs). In particular, according to Eq. (8), we have the e�ective moduli Kc;Gc of our
two-level model determined by

�K � SKf�=vs; 0; 0; 0;K;Gg; �G � SGf�=vs; 0; 0; 0;K;Gg;
Kc � SKf0; vs; �K; �G;K;Gg; Gc � SGf0; vs; �K; �G;K;Gg: �10�

The results of the calculations for two-level inclusion-forbidden model of Eq. (9) and matrix forbidden
model (10) at some values of vs and at crack density � � 0! 0:8 (m � 0:3) compared with the usual

Table 4

Di�erential approximation for the shear modulus Gc=G of cracked material with forbidden platelet zones

� vp � 0 vp � 0:2 vp � 0:4 vp � 0:6 vp � 0:8

0.08 0.894 0.894 0.894 0.894 0.893

0.16 0.796 0.796 0.796 0.795 0.795

0.24 0.707 0.706 0.706 0.706 0.706

0.32 0.626 0.625 0.625 0.625 0.626

0.40 0.552 0.552 0.553 0.554 0.557

0.48 0.487 0.487 0.489 0.491 0.496

0.56 0.428 0.429 0.432 0.436 0.444

0.64 0.376 0.378 0.382 0.388 0.398

0.72 0.329 0.333 0.339 0.347 0.360

0.80 0.288 0.293 0.300 0.311 0.326

Table 3

Di�erential approximation for the bulk modulus Kc=K of cracked material with forbidden platelet zones

� vp � 0 vp � 0:2 vp � 0:4 vp � 0:6 vp � 0:8

0.08 0.740 0.741 0.742 0.743 0.745

0.16 0.568 0.569 0.572 0.575 0.580

0.24 0.446 0.449 0.453 0.459 0.467

0.32 0.357 0.361 0.367 0.375 0.385

0.40 0.289 0.295 0.303 0.312 0.324

0.48 0.237 0.244 0.253 0.264 0.278

0.56 0.196 0.204 0.214 0.226 0.241

0.64 0.164 0.172 0.183 0.196 0.212

0.72 0.137 0.147 0.158 0.172 0.189

0.80 0.116 0.126 0.138 0.152 0.169
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di�erential crack model without forbidden zones are plotted in Figs. 1 and 2. One can see that the moduli of
the model (9) are smaller than those of the usual di�erential model. In particular, the model can have very
small elastic moduli toward zero values at given positive crack density �, when vs ! 1. On the contrary, the
moduli of the model (10) are larger and can approach those of the uncracked material at the given positive
crack density �, when vs ! 0. Thus, the cracks distributed at the grain boundary are much more deteri-

Fig. 1. Bulk modulus of two-level models compared with that of the usual di�erential model (m � 0:3).

Fig. 2. Shear modulus of two-level models compared with that of the usual di�erential model (m � 0:3).
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oratively-e�ective to the aggregate elastic moduli than those concentrated in the isolated centres of the
grains.

4. Cracked porous material

Consider a cracked porous material with density � of penny-shaped cracks and proportion vs (porosity)
of pores of spherical shape. Presume, that at ®rst the pores and the cracks are on the same size scales.
Substitute Ki � 0;Gi � 0 into the Eq. (5), we get the equations determining the elastic moduli Kc;Gc of our
cracked porous model:

dKc

dt
� ÿ 1

1ÿ vst
vs

Kc�3Kc � 4Gc�
4Gc

�
� � 4K2

c �3Kc � 4Gc�
3Gc�3Kc � Gc�

�
;

dGc

dt
� ÿ 1

1ÿ vst
vs

Gc�Gc � G�c�
G�c

�
� � 16Gc�9Kc � 4Gc��3Kc � 4Gc�

45�3Kc � 2Gc��3Kc � Gc�
�
;

06 t6 1; Kc�0� � K; Gc�0� � G; �11�

or according to Eq. (8)

Kc � SKf�; vs; 0; 0;K;Gg; Gc � SGf�; vs; 0; 0;K;Gg: �12�

The solutions of Eq. (11) at vs � 0; 0:2; 0:4; 0:6 and � � 0:08! 0:8 �m � 0:3� are plotted in Figs. 3 and 4.
Now, consider the case when the cracks are on the much smaller size scales than those of the pores. For

which, we use a two-level model: At ®rst, we apply the di�erential scheme to estimate the moduli �K; �G of the
material having virgin moduli K;G with crack density �=�1ÿ vs�. We then again use the scheme to deter-
mine the moduli Kc;Gc of the composite with pores of porosity vs suspended in the matrix of moduli �K; �G.
In particular, according to Eq. (8), we have

Fig. 3. Bulk modulus of the cracked porous material (m � 0:3).
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�K � SKf�=�1ÿ vs�; 0; 0; 0;K;Gg; �G � SGf�=�1ÿ vs�; 0; 0; 0;K;Gg;
Kc � SKf0; vs; 0; 0; �K; �Gg; Gc � SGf0; vs; 0; 0; �K; �Gg: �13�

Next, consider the case when the pores have much smaller sizes than those of the cracks. The two-level
model for it is as follows: At ®rst, we apply the di�erential scheme to estimate the moduli �K; �G of the
suspension of pores of porosity vs in matrix having moduli K;G; Then, again use the scheme to determine
the moduli Kc;Gc of the cracked material with virgin moduli �K; �G and crack density �. In particular, ac-
cording to Eq. (8), we have

�K � SKf0; vs; 0; 0;K;Gg; �G � SGf0; vs; 0; 0;K;Gg;
Kc � SKf�; 0; 0; 0; �K; �Gg; Gc � SGf�; 0; 0; 0; �K; �Gg: �14�

The elastic moduli curves of the two-level models (13) and (14) compared with that of the one-level
model (12) at vs � 0:2 and � � 0:08! 0:8 �m � 0:3� are given in Figs. 5 and 6. We see that at the same crack
density � and porosity vs the two-level small-pore large-crack model has the largest moduli, while the two-
level small-crack large-pore model possesses the smallest ones. The one-level pore-crack model gives the
intermediate moduli. However, the di�erences are not large.

5. Conclusions

The di�erential scheme has been developed to model the elastic behaviour of randomly cracked mate-
rials. An advantage of the scheme is that it corresponds, at least, to an exact geometry, while being used to
estimate the elastic moduli of usual random mixtures as other e�ective medium approximate schemes do.
The ¯exibility of the scheme allows us to take into account, beside the crack density, the shapes of the
cracks as well as the possible nonhomogeneous crack arrangements or di�erences in the relative sizes of the
inhomogeneities; the latter is the focus of this study. The nonhomogeneous distributions of the cracks have
been included by introducing forbidden regions for the cracks within the base material. The di�erences in

Fig. 4. Shear modulus of the cracked porous material (m � 0:3).
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the size scales of the inhomogeneities have been accounted for by using multi-scale di�erential scheme. The
modi®ed models may not di�er much from each other at small to intermediate values of crack density and
proportion of forbidden regions, but the di�erences may become large at higher values of those parameters.
Whenever the di�erences appear large, the re®ned geometric features of a particular mixture cannot be
ignored but to be accounted for a meaningful evaluation of e�ective moduli of the mixture. For random
particulate aggregates, the small cracks (compared with the grain sizes) distributed at the grain boundary
appear much more deteriorable to the aggregate e�ective moduli than those concentrated in the isolated

Fig. 5. Bulk modulus of the two-level cracked porous models (m � 0:3).

Fig. 6. Shear modulus of the two-level cracked porous models (m � 0:3).

P.D. Chinh / International Journal of Solids and Structures 37 (2000) 7759±7768 7767



centers of the grains. We expect that there would be no universal model and approximation for cracked
bodies, but the speci®c ones. Within our approach, a construction path of the di�erential scheme should be
based on physical sense from particular features of a crack con®guration, to which an approximation
should be restricted to.
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